Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Nat Commun ; 15(1): 3804, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714648

ABSTRACT

Messenger RNA (mRNA) therapeutics delivered via lipid nanoparticles hold the potential to treat metabolic diseases caused by protein deficiency, including propionic acidemia (PA), methylmalonic acidemia (MMA), and phenylketonuria (PKU). Herein we report results from multiple independent preclinical studies of mRNA-3927 (an investigational treatment for PA), mRNA-3705 (an investigational treatment for MMA), and mRNA-3210 (an investigational treatment for PKU) in murine models of each disease. All 3 mRNA therapeutics exhibited pharmacokinetic/pharmacodynamic (PK/PD) responses in their respective murine model by driving mRNA, protein, and/or protein activity responses, as well as by decreasing levels of the relevant biomarker(s) when compared to control-treated animals. These preclinical data were then used to develop translational PK/PD models, which were scaled allometrically to humans to predict starting doses for first-in-human clinical studies for each disease. The predicted first-in-human doses for mRNA-3927, mRNA-3705, and mRNA-3210 were determined to be 0.3, 0.1, and 0.4 mg/kg, respectively.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Disease Models, Animal , Phenylketonurias , Propionic Acidemia , RNA, Messenger , Propionic Acidemia/genetics , Propionic Acidemia/therapy , Propionic Acidemia/drug therapy , Animals , Phenylketonurias/genetics , Phenylketonurias/drug therapy , Phenylketonurias/therapy , RNA, Messenger/genetics , RNA, Messenger/metabolism , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/therapy , Amino Acid Metabolism, Inborn Errors/drug therapy , Mice , Humans , Male , Female , Nanoparticles/chemistry , Mice, Inbred C57BL , Liposomes
3.
Nature ; 628(8009): 872-877, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38570682

ABSTRACT

Propionic acidaemia is a rare disorder caused by defects in the propionyl-coenzyme A carboxylase α or ß (PCCA or PCCB) subunits that leads to an accumulation of toxic metabolites and to recurrent, life-threatening metabolic decompensation events. Here we report interim analyses of a first-in-human, phase 1/2, open-label, dose-optimization study and an extension study evaluating the safety and efficacy of mRNA-3927, a dual mRNA therapy encoding PCCA and PCCB. As of 31 May 2023, 16 participants were enrolled across 5 dose cohorts. Twelve of the 16 participants completed the dose-optimization study and enrolled in the extension study. A total of 346 intravenous doses of mRNA-3927 were administered over a total of 15.69 person-years of treatment. No dose-limiting toxicities occurred. Treatment-emergent adverse events were reported in 15 out of the 16 (93.8%) participants. Preliminary analysis suggests an increase in the exposure to mRNA-3927 with dose escalation, and a 70% reduction in the risk of metabolic decompensation events among 8 participants who reported them in the 12-month pretreatment period.


Subject(s)
Propionic Acidemia , Propionyl-Coenzyme A Carboxylase , RNA, Messenger , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Male , Young Adult , Administration, Intravenous , Dose-Response Relationship, Drug , Propionic Acidemia/genetics , Propionic Acidemia/therapy , Propionyl-Coenzyme A Carboxylase/genetics , Propionyl-Coenzyme A Carboxylase/metabolism , RNA, Messenger/administration & dosage , RNA, Messenger/adverse effects , RNA, Messenger/genetics , RNA, Messenger/therapeutic use
4.
J Inherit Metab Dis ; 47(1): 63-79, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37530705

ABSTRACT

Organic acidemias (OA) are a group of rare autosomal recessive disorders of intermediary metabolism that result in a systemic elevation of organic acid. Despite optimal dietary and cofactor therapy, OA patients still suffer from potentially lethal metabolic instability and experience long-term multisystemic complications. Severely affected patients can benefit from elective liver transplantation, which restores hepatic enzymatic activity, improves metabolic stability, and provides the theoretical basis for the pursuit of gene therapy as a new treatment for patients. Because of the poor outcomes reported in those with OA, especially methylmalonic and propionic acidemia, multiple gene therapy approaches have been explored in relevant animal models. Here, we review the results of gene therapy experiments performed using MMA and PA mouse models to illustrate experimental paradigms that could be applicable for all forms of OA.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Liver Transplantation , Propionic Acidemia , Animals , Mice , Humans , Propionic Acidemia/genetics , Propionic Acidemia/therapy , Propionic Acidemia/complications , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/therapy , Amino Acid Metabolism, Inborn Errors/complications , Liver Transplantation/adverse effects , Genetic Therapy , Disease Models, Animal , Methylmalonic Acid
5.
Mol Genet Metab ; 139(3): 107612, 2023 07.
Article in English | MEDLINE | ID: mdl-37245378

ABSTRACT

Clinical trial development in rare diseases poses significant study design and methodology challenges, such as disease heterogeneity and appropriate patient selection, identification and selection of key endpoints, decisions on study duration, choice of control groups, selection of appropriate statistical analyses, and patient recruitment. Therapeutic development in organic acidemias (OAs) shares many challenges with other inborn errors of metabolism, such as incomplete understanding of natural history, heterogenous disease presentations, requirement for sensitive outcome measures and difficulties recruiting a small sample of participants. Here, we review strategies for the successful development of a clinical trial to evaluate treatment response in propionic and methylmalonic acidemias. Specifically, we discuss crucial decisions that may significantly impact success of the study, including patient selection, identification and selection of endpoints, determination of the study duration, consideration of control groups including natural history controls, and selection of appropriate statistical analyses. The significant challenges associated with designing a clinical trial in rare disease can sometimes be successfully met through strategic engagement with experts in the rare disease, seeking regulatory and biostatistical guidance, and early involvement of patients and families.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Propionic Acidemia , Humans , Propionic Acidemia/genetics , Propionic Acidemia/therapy , Rare Diseases/therapy , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/therapy , Research Design , Methylmalonic Acid
6.
J Emerg Med ; 64(4): 496-501, 2023 04.
Article in English | MEDLINE | ID: mdl-37002163

ABSTRACT

BACKGROUND: Organic acidemias are rare genetic mutations, most commonly identified in the newborn period. Late-onset presentations present a diagnostic conundrum. Early identification and appropriate management can be lifesaving. CASE REPORT: We describe the case of a 3-year-old boy who presented to urgent care with 2 days of nausea, vomiting, and diarrhea followed by respiratory distress, shock, and encephalopathy. Brisk recognition of his shock state led to an urgent transfer to a tertiary care pediatric emergency department by air where his shock was treated and hyperammonemia was uncovered, leading to the diagnosis of late-onset propionic acidemia, which was subsequently managed with a good outcome. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Late-onset presentations of inborn errors of metabolism, including organic acidemias, represent one of the most challenging pediatric cases an emergency physician can encounter. This case reviews the management and diagnosis of a late-onset inborn error of metabolism and emphasizes how prompt diagnosis and treatment can lead to a favorable outcome.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Hyperammonemia , Propionic Acidemia , Infant, Newborn , Male , Child , Humans , Child, Preschool , Propionic Acidemia/diagnosis , Propionic Acidemia/therapy , Dehydration/diagnosis , Dehydration/etiology , Amino Acid Metabolism, Inborn Errors/diagnosis , Amino Acid Metabolism, Inborn Errors/therapy , Vomiting/etiology , Emergency Service, Hospital
7.
Nutr Metab Cardiovasc Dis ; 33(3): 667-670, 2023 03.
Article in English | MEDLINE | ID: mdl-36710110

ABSTRACT

Propionic acidemia (PA) is a rare inherited metabolic disease due to inborn errors of metabolism. PA results in the accumulation of abnormal organic acid metabolites in multiple systems, mainly the central nervous system and the heart. Cardiac complications include dilated cardiomyopathy (DCM) and carry a 40-50% increased mortality risk. Liver transplantation (LT) is required in PA patients when medical treatment fails and may prevent or slow down the cardiomyopathy progression. However, severe heart disease may be a serious contraindication to LT. We present a complicated case of a PA patient, supported with a Left Ventricular Assist Device, who underwent a heart and Liver transplant. PA patients are at increased risk for metabolic acidosis during surgery, with increased anion gap and hyperammonemia. A strict multi-disciplinary approach is needed to prevent and treat metabolic decompensation. The patient had a successful heart and liver transplant after a strict treatment protocol in the pre, intra, and post-operative periods. His case highlights the complexity of PA patients and the increased risk for metabolic decompensation during surgery and provides an insight into how to manage such complicated patients.


Subject(s)
Cardiomyopathies , Heart-Assist Devices , Liver Transplantation , Propionic Acidemia , Humans , Cardiomyopathies/etiology , Cardiomyopathies/surgery , Liver Transplantation/adverse effects , Propionic Acidemia/complications , Propionic Acidemia/diagnosis , Propionic Acidemia/therapy , Treatment Outcome , Male
8.
J Inherit Metab Dis ; 44(3): 566-592, 2021 05.
Article in English | MEDLINE | ID: mdl-33595124

ABSTRACT

Isolated methylmalonic acidaemia (MMA) and propionic acidaemia (PA) are rare inherited metabolic diseases. Six years ago, a detailed evaluation of the available evidence on diagnosis and management of these disorders has been published for the first time. The article received considerable attention, illustrating the importance of an expert panel to evaluate and compile recommendations to guide rare disease patient care. Since that time, a growing body of evidence on transplant outcomes in MMA and PA patients and use of precursor free amino acid mixtures allows for updates of the guidelines. In this article, we aim to incorporate this newly published knowledge and provide a revised version of the guidelines. The analysis was performed by a panel of multidisciplinary health care experts, who followed an updated guideline development methodology (GRADE). Hence, the full body of evidence up until autumn 2019 was re-evaluated, analysed and graded. As a result, 21 updated recommendations were compiled in a more concise paper with a focus on the existing evidence to enable well-informed decisions in the context of MMA and PA patient care.


Subject(s)
Amino Acid Metabolism, Inborn Errors/diagnosis , Amino Acid Metabolism, Inborn Errors/therapy , Propionic Acidemia/diagnosis , Propionic Acidemia/therapy , Disease Management , Humans
9.
Allergol. immunopatol ; 49(1): 101-106, ene.-feb. 2021. graf, tab
Article in English | IBECS | ID: ibc-199232

ABSTRACT

BACKGROUND: Propionate inborn errors of metabolism (PIEM), including propionic (PA) and methylmalonic (MMA) acidemias, are inherited metabolic diseases characterized by toxic accumulation of propionic, 3-hydroxypropionic, methylcitric, and methylmalonic organic acids in biological fluids, causing recurrent acute metabolic acidosis events and encephalopathy, which can lead to fatal outcomes if managed inadequately. PIEM patients can develop hemato­logical abnormalities and immunodeficiency, either as part of the initial clinical presentation or as chronic complications. The origin and characteristics of these abnormalities have been studied poorly. Thus, the aim of the present work was to evaluate and describe lymphoid, myeloid, and erythroid cell population profiles in a group of clinically stable PIEM patients. METHODS: This was a retrospective study of 11 nonrelated Mexican PIEM patients. Clinical, bio­chemical, nutritional, hematological, and lymphocyte subsets were analyzed. RESULTS: Despite being considered clinically stable, 91% of patients had hematological or immu­nological abnormalities. The absolute lymphocyte subset counts were low in all patients but one, with CD4+ T-cell lymphopenia, being the most common one. Furthermore, of the 11 stud­ied subjects, nine presented with a low CD4/CD8 ratio. Among the observed hematological alterations, bicytopenia was the most common (82%) one, followed by anemia (27%). CONCLUSION: Our results contribute to the landscape of immunological abnormalities observed previously in PIEM patients; these abnormalities can become a life-threatening chronic com­plications because of the increased risk of opportunistic diseases. These findings allow us to propose the inclusion of monitoring immune biomarkers, such as subsets of lymphocytes in the follow up of PIEM patients


No disponible


Subject(s)
Humans , Male , Female , Infant , Child, Preschool , Child , Metabolism, Inborn Errors/therapy , Metabolism, Inborn Errors/diagnosis , Propionic Acidemia/diagnosis , Acidosis/complications , Propionic Acidemia/therapy , Mexico , Retrospective Studies , CD4 Antigens/immunology , CD8 Antigens/immunology , Mass Spectrometry/methods , Flow Cytometry , Acidosis/immunology
10.
J Inherit Metab Dis ; 44(3): 593-605, 2021 05.
Article in English | MEDLINE | ID: mdl-32996606

ABSTRACT

BACKGROUND: This study provides a general overview on liver and/or kidney transplantation in patients with an amino and organic acid-related disorder (AOA) with the aim to investigate patient characteristics and global outcome in Europe. This study was an initiative of the E-IMD and the AOA subnetwork of MetabERN. METHODS: A questionnaire was sent to all clinically active European Society for the Study of Inborn Errors of Metabolism (SSIEM) members. The questionnaire focused on transplanted individuals with methylmalonic acidemia (MMA), propionic acidemia (PA), maple syrup urine disease (MSUD), and urea-cycle disorders (UCDs). RESULTS: We identified 280 transplanted AOA patients (liver transplantation in 20 MMA, 37 PA, 47 MSUD, and 111 UCD patients, kidney or combined liver and kidney transplantation in 57 MMA patients and undefined transplantation type in 8 MMA patients), followed by 51 metabolic centers. At a median follow-up of 3.5 years, posttransplant survival ranged between 78% and 100%, being the lowest in PA patients. Overall, the risk of mortality was highest within 14 days posttransplantation. Neurological complications were mainly reported in Mut0 type MMA (n = 8). Nonneurological complications occurred in MMA (n = 28), PA (n = 7), and UCD (n = 14) patients, while it was virtually absent in MSUD patients. Only 116/280 patients were psychologically tested. In all, except MSUD patients, the intelligence quotient (IQ) remained unchanged in the majority (76/94, 81%). Forty-one percentage (9/22) of MSUD patient showed improved IQ. CONCLUSION: The survival in AOA individuals receiving liver and/or kidney transplantation seems satisfactory. Evidence-based guidelines, systematic data collection, and improved cooperation between transplantation centers and European Reference Networks are indispensable to improve patient care and outcomes.


Subject(s)
Amino Acid Metabolism, Inborn Errors/therapy , Kidney Transplantation , Liver Transplantation , Maple Syrup Urine Disease/therapy , Propionic Acidemia/therapy , Urea Cycle Disorders, Inborn/therapy , Adolescent , Adult , Amino Acid Metabolism, Inborn Errors/mortality , Child , Child, Preschool , Europe/epidemiology , Female , Humans , Infant , Male , Maple Syrup Urine Disease/mortality , Propionic Acidemia/mortality , Survival Rate , Urea Cycle Disorders, Inborn/mortality , Young Adult
11.
Nat Commun ; 11(1): 5339, 2020 10 21.
Article in English | MEDLINE | ID: mdl-33087718

ABSTRACT

Propionic acidemia/aciduria (PA) is an ultra-rare, life-threatening, inherited metabolic disorder caused by deficiency of the mitochondrial enzyme, propionyl-CoA carboxylase (PCC) composed of six alpha (PCCA) and six beta (PCCB) subunits. We herein report an enzyme replacement approach to treat PA using a combination of two messenger RNAs (mRNAs) (dual mRNAs) encoding both human PCCA (hPCCA) and PCCB (hPCCB) encapsulated in biodegradable lipid nanoparticles (LNPs) to produce functional PCC enzyme in liver. In patient fibroblasts, dual mRNAs encoded proteins localize in mitochondria and produce higher PCC enzyme activity vs. single (PCCA or PCCB) mRNA alone. In a hypomorphic murine model of PA, dual mRNAs normalize ammonia similarly to carglumic acid, a drug approved in Europe for the treatment of hyperammonemia due to PA. Dual mRNAs additionally restore functional PCC enzyme in liver and thus reduce primary disease-associated toxins in a dose-dependent manner in long-term 3- and 6-month repeat-dose studies in PA mice. Dual mRNAs are well-tolerated in these studies with no adverse findings. These studies demonstrate the potential of mRNA technology to chronically administer multiple mRNAs to produce large complex enzymes, with applicability to other genetic disorders.


Subject(s)
Enzyme Replacement Therapy/methods , Propionic Acidemia/therapy , RNA, Messenger/therapeutic use , Animals , Disease Models, Animal , Glutamates/therapeutic use , Humans , Kinetics , Lipids/chemistry , Liver/enzymology , Methylmalonyl-CoA Decarboxylase/chemistry , Methylmalonyl-CoA Decarboxylase/genetics , Methylmalonyl-CoA Decarboxylase/metabolism , Mice , Mice, Knockout , Mice, Transgenic , Mitochondria/enzymology , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Propionic Acidemia/genetics , Propionic Acidemia/metabolism , Protein Subunits/chemistry , Protein Subunits/genetics , RNA, Messenger/administration & dosage , RNA, Messenger/genetics
12.
J Inherit Metab Dis ; 43(3): 424-437, 2020 05.
Article in English | MEDLINE | ID: mdl-31828787

ABSTRACT

Evidence for effectiveness of newborn screening (NBS) for propionic acidemia (PA) and isolated methylmalonic acidemia (MMA) is scarce. Prior to implementation in the Netherlands, we aim to estimate the expected health gain of NBS for PA and MMA. In this national retrospective cohort study, the clinical course of 76/83 Dutch PA and MMA patients, diagnosed between January 1979 and July 2019, was evaluated. Five clinical outcome parameters were defined: adverse outcome of the first symptomatic phase, frequency of acute metabolic decompensations (AMD), cognitive function, mitochondrial complications, and treatment-related complications. Outcomes of patients identified by family testing were compared with the outcomes of their index siblings. An adverse outcome due to the first symptomatic phase was recorded in 46% of the clinically diagnosed patients. Outcome of the first symptomatic phase was similar in 5/9 sibling pairs and better in 4/9 pairs. Based on the day of diagnosis of the clinically diagnosed patients and sibling pair analysis, a preliminary estimated reduction of adverse outcome due to the first symptomatic phase from 46% to 36%-38% was calculated. Among the sibling pairs, AMD frequency, cognitive function, mitochondrial, and treatment-related complications were comparable. These results suggest that the health gain of NBS for PA and MMA in overall outcome may be limited, as only a modest decrease of adverse outcomes due to the first symptomatic phase is expected. With current clinical practice, no reduced AMD frequency, improved cognitive function, or reduced frequency of mitochondrial or treatment-related complications can be expected.


Subject(s)
Amino Acid Metabolism, Inborn Errors/diagnosis , Mitochondrial Diseases/complications , Propionic Acidemia/diagnosis , Amino Acid Metabolism, Inborn Errors/physiopathology , Amino Acid Metabolism, Inborn Errors/therapy , Cognition , Female , Humans , Infant, Newborn , Kaplan-Meier Estimate , Male , Methylmalonic Acid , Mitochondrial Diseases/physiopathology , Neonatal Screening , Netherlands , Propionic Acidemia/physiopathology , Propionic Acidemia/therapy , Retrospective Studies , Siblings
13.
Mol Genet Metab ; 128(4): 431-443, 2019 12.
Article in English | MEDLINE | ID: mdl-31757659

ABSTRACT

BACKGROUND: Organic acidemias, especially propionic acidemia (PA) and methylmalonic acidemia (MMA), may manifest clinically within the first few hours to days of life. The classic presentation in the newborn period includes metabolic acidosis, hyperlactatemia, and hyperammonemia that is precipitated by unrestricted protein intake. Implementation of newborn screening to diagnose and initiate early treatment has facilitated a reduction in neonatal mortality and improved survival. Despite early diagnosis and appropriate management, these individuals are prone to have recurrent episodes of metabolic acidosis and hyperammonemia resulting in frequent hospitalizations. Liver transplantation (LT) has been proposed as a treatment modality to reduce metabolic decompensations which are not controlled by medical management. Published reports on the outcome of LT show heterogeneous results regarding clinical and biochemical features in the post transplantation period. As a result, we evaluated the outcomes of LT in our institution and compared it to the previously published data. STUDY DESIGN/METHODS: We performed a retrospective chart review of nine individuals with PA or MMA who underwent LT and two individuals with MMA who underwent LT and kidney transplantation (KT). Data including number of hospitalizations, laboratory measures, cardiac and neurological outcomes, dietary protein intake, and growth parameters were collected. RESULTS: The median age of transplantation for subjects with MMA was 7.2 years with a median follow up of 4.3 years. The median age of transplantation for subjects with PA was 1.9 years with a median follow up of 5.4 years. The survival rate at 1 year and 5 years post-LT was 100%. Most of our subjects did not have any episodes of hyperammonemia or pancreatitis post-LT. There was significant reduction in plasma glycine post-LT. One subject developed mild elevation in ammonia post-LT on an unrestricted protein diet, suggesting that protein restriction may be indicated even after LT. CONCLUSION: In a large single center study of LT in MMA and PA, we show that LT may reduce the incidence of metabolic decompensation. Moreover, our data suggest that LT may be associated with reduced number of hospitalizations and improved linear growth in individuals with PA and MMA.


Subject(s)
Amino Acid Metabolism, Inborn Errors/therapy , Liver Transplantation , Propionic Acidemia/therapy , Adolescent , Alleles , Amino Acid Metabolism, Inborn Errors/diagnosis , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/mortality , Biomarkers , Child , Child, Preschool , Follow-Up Studies , Genotype , Hospitalization , Humans , Infant , Infant, Newborn , Liver Function Tests , Liver Transplantation/adverse effects , Liver Transplantation/methods , Magnetic Resonance Imaging , Mutation , Phenotype , Prognosis , Propionic Acidemia/diagnosis , Propionic Acidemia/genetics , Propionic Acidemia/mortality , Retrospective Studies
14.
BMC Pediatr ; 19(1): 195, 2019 06 13.
Article in English | MEDLINE | ID: mdl-31196016

ABSTRACT

INTRODUCTION: Propionic acidemia (PA) and methylmalonic acidemia (MMA) are rare autosomal recessive inborn errors of metabolism characterized by hyperammonemia due to N-acetylglutamate synthase (NAGS) dysfunction. Carglumic acid (Carbaglu®; Orphan Europe Ltd.) is approved by the US Food and Drug Administration (USFDA) for the treatment of hyperammonemia due hepatic NAGS deficiency. Here we report the rationale and design of a phase IIIb trial that is aimed at determining the long-term efficacy and safety of carglumic acid in the management of PA and MMA. METHODS: This prospective, multicenter, open-label, randomized, parallel group phase IIIb study will be conducted in Saudi Arabia. Patients with PA or MMA (≤15 years of age) will be randomized 1:1 to receive twice daily carglumic acid (50 mg/kg/day) plus standard therapy (protein-restricted diet, L-carnitine, and metronidazole) or standard therapy alone for a 2-year treatment period. The primary efficacy outcome is the number of emergency room visits due to hyperammonemia. Safety will be assessed throughout the study and during the 1 month follow-up period after the study. DISCUSSION: Current guidelines recommend conservative medical treatment as the main strategy for the management of PA and MMA. Although retrospective studies have suggested that long-term carglumic acid may be beneficial in the management of PA and MMA, current literature lacks evidence for this indication. This clinical trial will determine the long-term safety and efficacy of carglumic acid in the management of PA and MMA. TRIAL REGISTRATION: King Abdullah International Medical Research Center ( KAIMRC ): (RC13/116) 09/1/2014. Saudi Food and Drug Authority (SFDA) (33066) 08/14/2014. ClinicalTrials.gov (identifier: NCT02426775) 04/22/2015.


Subject(s)
Amino Acid Metabolism, Inborn Errors/drug therapy , Clinical Trials, Phase III as Topic , Glutamates/therapeutic use , Propionic Acidemia/drug therapy , Randomized Controlled Trials as Topic , Adolescent , Carnitine/therapeutic use , Child , Diet, Protein-Restricted , Drug Administration Schedule , Early Termination of Clinical Trials , Glutamates/adverse effects , Humans , Metronidazole/therapeutic use , Multicenter Studies as Topic , Propionic Acidemia/therapy , Prospective Studies , Sample Size , Saudi Arabia
15.
J Inherit Metab Dis ; 42(5): 745-761, 2019 09.
Article in English | MEDLINE | ID: mdl-31119742

ABSTRACT

Despite realizing increased survival rates for propionic acidemia (PA) and methylmalonic acidemia (MMA) patients, the current therapeutic regimen is inadequate for preventing or treating the devastating complications that still can occur. The elucidation of pathophysiology of these complications allows us to evaluate and rethink treatment strategies. In this review we display and discuss potential therapy targets and we give a systematic overview on current, experimental and unexplored treatment strategies in order to provide insight in what we have to offer PA and MMA patients, now and in the future. Evidence on the effectiveness of treatment strategies is often scarce, since none were tested in randomized clinical trials. This raises concerns, since even the current consensus on best practice treatment for PA and MMA is not without controversy. To attain substantial improvements in overall outcome, gene, mRNA or enzyme replacement therapy is most promising since permanent reduction of toxic metabolites allows for a less strict therapeutic regime. Hereby, both mitochondrial-associated and therapy induced complications can theoretically be prevented. However, the road from bench to bedside is long, as it is challenging to design a drug that is delivered to the mitochondria of all tissues that require enzymatic activity, including the brain, without inducing any off-target effects. To improve survival rate and quality of life of PA and MMA patients, there is a need for systematic (re-)evaluation of accepted and potential treatment strategies, so that we can better determine who will benefit when and how from which treatment strategy.


Subject(s)
Amino Acid Metabolism, Inborn Errors/therapy , Mitochondrial Diseases/therapy , Propionic Acidemia/therapy , Amino Acid Metabolism, Inborn Errors/physiopathology , Animals , Brain/metabolism , Disease Management , Humans , Mitochondria/metabolism , Mitochondrial Diseases/physiopathology , Propionic Acidemia/physiopathology
16.
Orphanet J Rare Dis ; 14(1): 73, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30940196

ABSTRACT

BACKGROUND: Most patients with isolated methylmalonic acidemia (MMA) /propionic acidemia (PA) presenting during the neonatal period with acute metabolic distress are at risk for death and significant neurodevelopmental disability. The nationwide newborn screening for MMA/PA has been in place in Taiwan from January, 2000 and data was collected until December, 2016. RESULTS: During the study period, 3,155,263 newborns were screened. The overall incidence of MMA mutase type cases was 1/121,356 (n = 26), 1 cobalamin B was detected and that for PA cases (n = 4) was 1/788,816. The time of referral is 8.8 days for MMA patients, and 7.5 days for PA patients. The MMA mutase type patients have higher AST, ALT, and NH3 values as well as a lower pH value (p < 0.05). The mean age for liver transplantation (LT) is 402 days (range from 0.6-6.7 yr) with 16 out of 20 cases (80.0%) using living donors. The mean admission length shortened from 90.6 days/year (pre-LT) to 5.3 days/year (at 3rd year post-LT) (p < 0.0005). Similarly, the tube feeding ratio decreased from 67.8 to 0.50% (p < 0.00005). The anxiety level of the caregiver was reduced from 33.4 to 27.2 after LT (p = 0.001) and the DQ/IQ performance of the patients was improved after LT from 50 to 60.1 (p = 0.07). CONCLUSION: MMA/PA patients with LT do survive and have reduced admission time, reduced tube feeding and the caregiver is less anxious.


Subject(s)
Amino Acid Metabolism, Inborn Errors/physiopathology , Amino Acid Metabolism, Inborn Errors/therapy , Liver Transplantation/standards , Propionic Acidemia/physiopathology , Propionic Acidemia/therapy , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/mortality , Caregivers/psychology , Caregivers/statistics & numerical data , Enteral Nutrition/statistics & numerical data , Female , Hospitalization/statistics & numerical data , Humans , Infant, Newborn , Liver Transplantation/mortality , Male , Mutation , Neonatal Screening , Propionic Acidemia/genetics , Propionic Acidemia/mortality , Taiwan , Treatment Outcome
17.
J Extra Corpor Technol ; 49(1): 64-66, 2017 03.
Article in English | MEDLINE | ID: mdl-28298669

ABSTRACT

The usual indications for extra corporeal membrane oxygenation (ECMO) are for respiratory or cardiac failure. Although continuous renal replacement therapy (CRRT) is frequently used when patients are on ECMO, the need for CRRT as the primary indication for ECMO is rare. A case of a neonate placed onto veno-venous ECMO for the use of CRRT to treat hyperammonemia from propionic acidemia is presented.


Subject(s)
Anastomosis, Surgical/methods , Extracorporeal Membrane Oxygenation/methods , Propionic Acidemia/therapy , Renal Replacement Therapy/methods , Female , Humans , Infant, Newborn , Treatment Outcome
18.
Pediatr Emerg Care ; 33(2): 142-146, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28141776

ABSTRACT

Inborn errors of metabolism (IEM) are genetic disorders that disrupt enzyme activity, cellular transport, or energy production. They are individually rare, but collectively have an incidence of 1:1000. Most patients with IEMs are followed by a physician with expertise in Biochemical Genetics (Metabolism), but may present outside of this setting. Because IEMs can present acutely with life-threatening crises that require specific interventions, it is critical for the emergency medicine physicians, pediatricians, internists, and critical care physicians as well as biochemical geneticists to be familiar with the initial assessment and management of patients with these disorders. Appropriate early care can be lifesaving. This protocol is not designed to replace the expert consultation of a biochemical geneticist but rather to improve early care and increase the level of comfort of the acute care physician with initial management of organic acidemias until specialty consultation is obtained.


Subject(s)
Amino Acid Metabolism, Inborn Errors/therapy , Propionic Acidemia/therapy , Acute Disease , Amino Acid Metabolism, Inborn Errors/diagnosis , Disease Management , Humans , Propionic Acidemia/diagnosis
19.
Liver Transpl ; 21(9): 1208-18, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25990417

ABSTRACT

Propionic acidemia (PA) and classical methylmalonic acidemia (MMA) are rare inborn errors of metabolism that can cause early mortality and significant morbidity. The mainstay of disease management is lifelong protein restriction. As an alternative, liver transplantation (LT) may improve survival, quality of life, and prevent further neurological deterioration. The aim of our study was to estimate the incremental costs and outcomes of LT versus nutritional support in patients with early-onset MMA or PA. We constructed a Markov model to simulate and compare life expectancies, quality-adjusted life years (QALYs), and lifetime direct and indirect costs for a cohort of newborns with MMA or PA who could either receive LT or be maintained on conventional nutritional support. We conducted a series of 1-way and probabilistic sensitivity analyses. In the base case, LT on average resulted in 1.5 more life years lived, 7.9 more QALYs, and a savings of $582,369 for lifetime societal cost per individual compared to nutritional support. LT remained more effective and less costly in all 1-way sensitivity analyses. In the probabilistic sensitivity analysis, LT was cost-effective at the $100,000/QALY threshold in more than 90% of the simulations and cost-saving in over half of the simulations. LT is likely a dominant treatment strategy compared to nutritional support in newborns with classical MMA or PA.


Subject(s)
Amino Acid Metabolism, Inborn Errors/economics , Amino Acid Metabolism, Inborn Errors/therapy , Diet, Protein-Restricted/economics , Liver Transplantation/economics , Nutritional Support/economics , Propionic Acidemia/economics , Propionic Acidemia/therapy , Amino Acid Metabolism, Inborn Errors/diagnosis , Amino Acid Metabolism, Inborn Errors/mortality , Cost-Benefit Analysis , Decision Trees , Diet, Protein-Restricted/adverse effects , Health Care Costs , Humans , Infant, Newborn , Liver Transplantation/adverse effects , Liver Transplantation/mortality , Markov Chains , Models, Economic , Nutritional Support/adverse effects , Propionic Acidemia/diagnosis , Propionic Acidemia/mortality , Quality of Life , Quality-Adjusted Life Years , Risk Factors , Survivors , Time Factors , Treatment Outcome
20.
Hum Gene Ther ; 26(3): 153-60, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25654275

ABSTRACT

Propionic academia (PA) occurs because of mutations in the PCCA or PCCB genes encoding the two subunits of propionyl-CoA carboxylase, a pivotal enzyme in the breakdown of certain amino acids and odd-chain fatty acids. There is no cure for PA, but dietary protein restriction and liver transplantation can attenuate its symptoms. We show here that a single intravenous injection of adeno-associated virus 2/8 (AAV8) or AAVrh10 expressing PCCA into PA hypomorphic mice decreased systemic propionylcarnitine and methyl citrate for up to 1.5 years. However, long-term phenotypic correction was always better in male mice. AAV-mediated PCCA expression was similar in most tissues in males and females at early time points and differed only in the liver. Over 1.5 years, luciferase and PCCA expression remained elevated in cardiac tissue for both sexes. In contrast, transgene expression in the liver and skeletal muscles of female, but not male, mice waned­suggesting that these tissues were major sinks for systemic phenotypic correction. These data indicate that single systemic intravenous therapy by AAV vectors can mediate long-term phenotype correction for PA. However, tissue-specific loss of expression in females reduces efficacy when compared with males. Whether similar sex-biased AAV effects occur in human gene therapy remains to be determined.


Subject(s)
Biomarkers/blood , Genetic Therapy/methods , Genetic Vectors/genetics , Methylmalonyl-CoA Decarboxylase/metabolism , Propionic Acidemia/genetics , Propionic Acidemia/therapy , Sex Characteristics , Animals , Carnitine/analogs & derivatives , Carnitine/blood , Citrates/blood , Dependovirus , Female , Injections, Intravenous , Liver/metabolism , Luciferases , Male , Methylmalonyl-CoA Decarboxylase/genetics , Mice , Muscle, Skeletal/metabolism , Propionic Acidemia/blood , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...